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ABSTRACT

The applicability of telomeric alcohols, H(CF2CF2)nCH2OH, for the synthesis of ω-functionalized F-alkylating reagents, I(CF2CF2)n-1CH2OAc (6,
n ) 5), is demonstrated. The key steps of this optimized method are the “activation” of the HCF2- terminus in a lithiation process yielding
olefin 2 [(Z+E)-BuCFdCF(CF2CF2)4CH2OH, 86%] and a successive ozonation reaction in trifluoroethanol media affording ester 3b [CF3CH2O2C(CF2-
CF2)4CH2OH, 93%]. Highly stereospecific ozone cleavage of the (E)-2 isomer was observed in methanol due to the competitive oxidation of the
solvent.

The concept of fluorous biphase systems (FBS), drafted in
1994, served as a basis of several novel applications in
homogeneous catalysis and synthetic chemistry utilizing the
unique properties of perfluorocarbon solvents (nontoxicity,
inertness, hydrophobicity, lipophobicity).1 The techniques of
fluorous synthesis (FS)2 and fluorous mixture synthesis
(FMS)2e developed by Curran and co-workers capitalize on
the application of fluorous solvents and/or fluorous solid
surfaces (perfluoroalkylated reverse phase silica gel,F-SiO2)2d

for facile product separation, where the phase behavior of
target molecules is purposefully modified by the attachment
of adequate fluorous phase labels.1-3 Either fluorous liquid-
liquid extraction1 or solid-phase extraction and chromatog-
raphy usingF-SiO2 (“light FS” 2d and FMS2e) can be the
method of choice for isolation, depending on the “fluorous-
ness”3 of molecules involved in these systems.

Fluorous methods have opened wide perspectives also in
combinatorial synthesis2c and produced a firm market for
designed3 fluorous reagents and labels. Since the commonly
used perfluoroalkyl iodides are monofunctional reagents, they
allow the introduction of perfluorinated units only into
terminal positions.3,4 Consequently, the development of
effective synthesis of X(CF2)nY type reagents could provide
larger structural versatility for the synthesis of fluorophilic3

and multiblock compounds, including liquid crystalline
structures,5 biomaterials,6 and self-assembled polymeric
systems.7

In this Letter we describe a convenient method for the
synthesis ofω-functionalized perfluoroalkyl iodides, useful
building blocks of compounds containing the -(CF2)n-
segments in an inner position. A molecule of this kind,
I(CF2)8CO2Me, was synthesized recently from perfluorose-
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Hughes, R. P.Inorg. Chem. Commun. 1998,1, 197. (b) Barthel-Rosa, L.
P.; Gladysz, J. A.Coord. Chem. ReV.1999,190-192, 587. (c) Rocaboy,
C.; Rutherford, D.; Bennett, B. L.; Gladysz, J. A.J. Phys. Org. Chem.2000,
13, 596. For calculation of “fluorousness” from partition data, see: (d) Kiss,
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bacic acid8 and used for the construction of a reverse
F-amphiphile.8,9 Some other types of longerω-functionalized
perfluoroalkyl iodides [I(CF2)nR, n g 4] are also known,10

which could allow selective transformations at both their
terminuses.4

The present study was inspired by the early work of
Wakselman and co-workers.11 Accordingly, in the first step
of our optimized procedure alcohol1 was converted to olefin
2 using an organolithium reagent.12 Then, in the next step
we used ozone, a hazardous but clean oxidant, to cleave2
at the double bond, since previous studies have demonstrated
its effectiveness in different solvents.13,14

As a media for ozonation, we tested several alcohols and
found that trifluoroethanol was the most effective one.15

Surprisingly, ozonation in methanol showed highly stereo-
selective transformation of the (E)-2 isomer to methyl ester
3a, leaving (Z)-2 unchanged (Scheme 1, R) H). This can

be explained by the participation of methanol in the ozone
reaction as proved by the presence of methyl formate in the
crude reaction mixture (GC), indicating that the solvent could
inhibit the transformation of the (Z)-2 form in a competitive
oxidation process.

Trifluoroethanol, a highly resistant solvent to ozone
oxidation, consequently, allowed both (Z)-2and (E)-2
isomers to be converted to trifluoroethyl ester3b in high

yield (Scheme 1, R) CF3). Afterward,3b was transformed
to silver salt4, which on acylation with acetic anhydride
yielded the hydroxyl-protected salt5, a suitable precursor
for a Hunsdiecker-type reaction with iodine to afford the
expectedω-functionalizedF-alkyl iodide 6.

The synthetic applicability of this novelF-alkylating
reagent6 was demonstrated via its successful radical addition
reaction to the CdC double bond of 1-undecene in the
presence of AIBN to produce the long hydrocarbon and
fluorocarbon mixed chain coupled product7 (Scheme 2).

Further reactions of this diblock compound7 toward
reverse fluorinated amphiphiles along with transformation
of shorter chain alcohols [H(CF2CF2)nCH2OH; n ) 2-4] to
bifunctional derivatives will soon be published in detail.
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